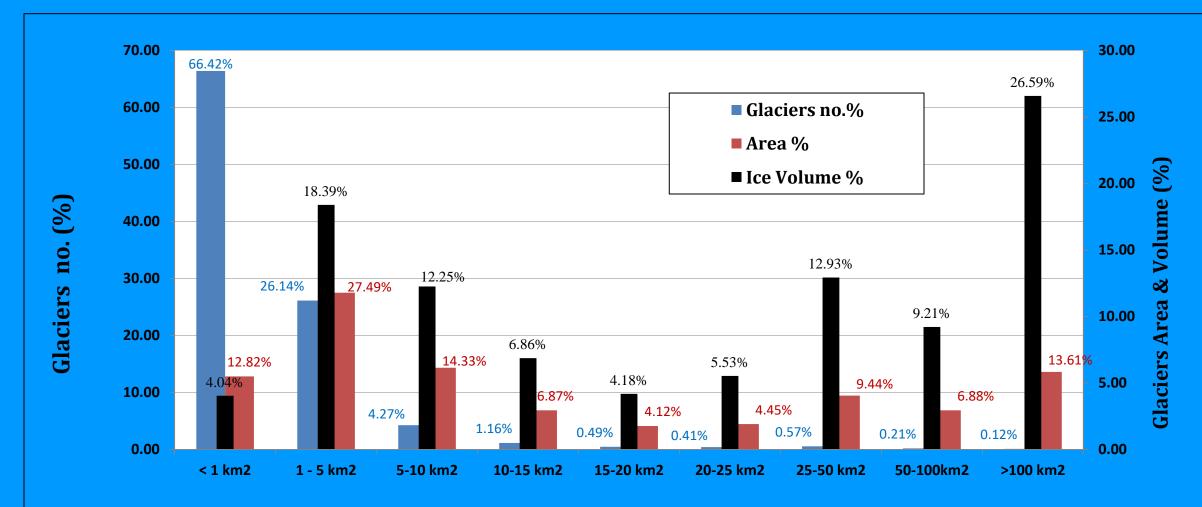
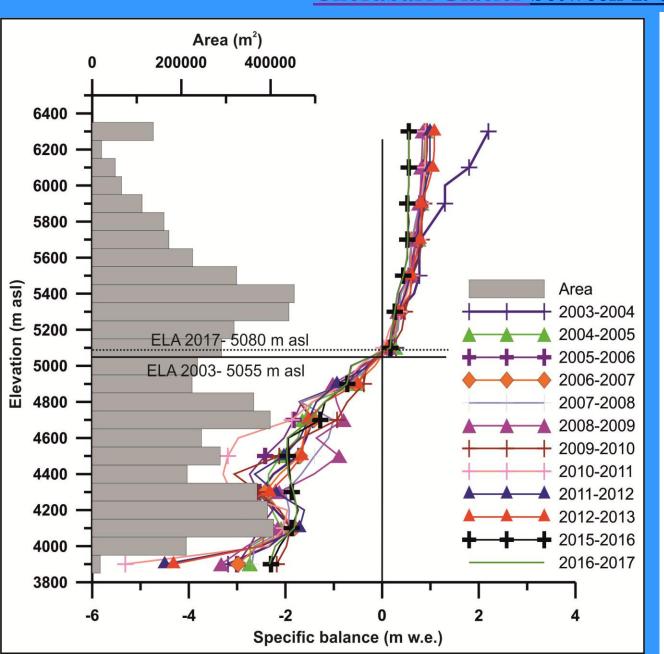


Glaciological Studies in Indian Himalayan Region (IHR) By Wadia Institute of Himalayan Geology



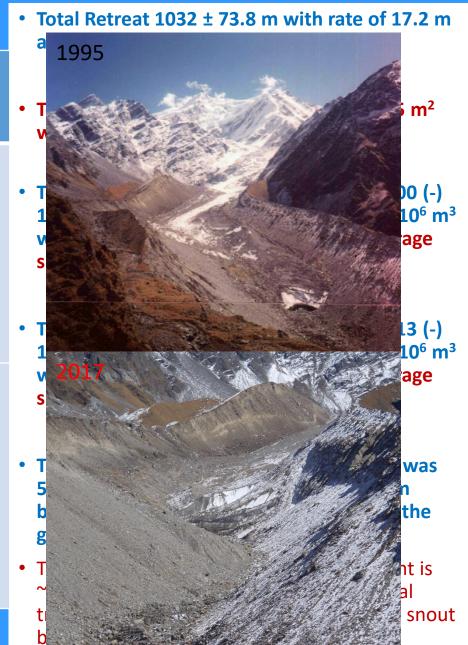
- At present, WIHG is monitoring 07 glaciers in Uttarakhand (Chorabari, Dokriani, Dunagiri, Bangni, Gangotri, Pindari, Kafni) and six (6) glaciers (Pensilguppa, Prakachik, Durung Drang, Siachen, 02 unnamed in Karakoram) are located in Western Himalaya and Karakoram. using the ground-based observations and satellite data.
- The monitoring includes **glacier dynamics** (mass balance, retreat, velocity), **meteorology** (air temperature, precipitation, radiation, aerosols), **hydrology** (discharge, sediment transfer, geochemistry, stable isotopes), and **glacier-related hazards** (glacial lake outburst flood, debris flow, moraine failure, etc.).

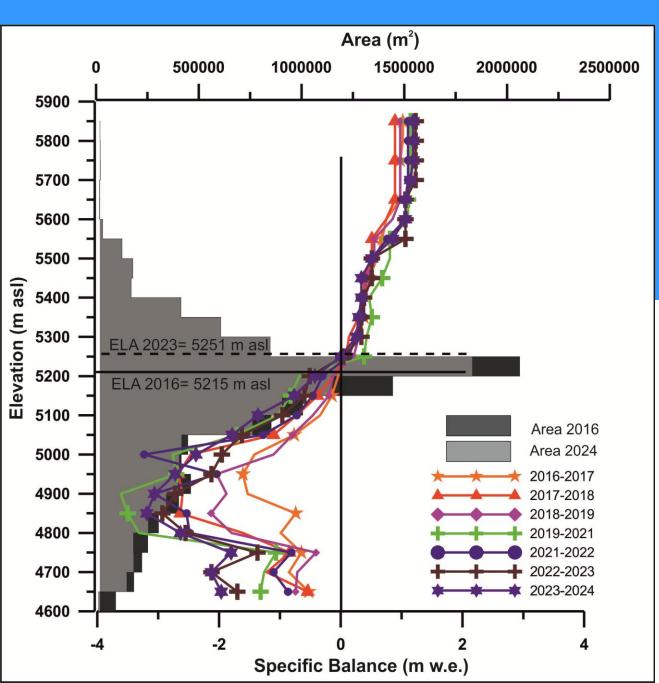
Distribution of Himalayan Glaciers


Glaciers number, Ice Volume and Area

The studies have shown that large glaciers with an area > 10 km^2 are unlikely to get affected appreciably in the coming years. However, the small glacier of $^{\sim}1-2 \text{ km}^2$ or $< 1 \text{ km}^2$ may show rapid changes. In the Himalaya, concentration of small glaciers is about 60-65%, while the concentration of larger glacier (> 10 km^2) is about 5%.

Glacier Dynamics

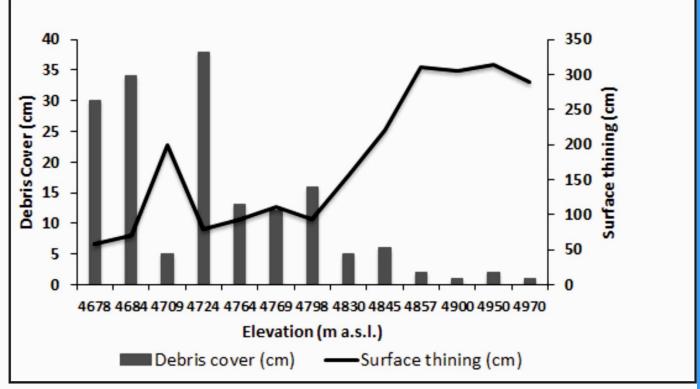

1) Specific mass balance gradient vs elevation (2003 to 2017) and snout retreat by of Chorabari Glacier between 1962- 2022 (Dobhal et al., 2013 and Mehta et al. 2025)


- > Total Retreat 418 ± 26 m with rate of 6.9 m a⁻¹ between 1962 and 2022
- > Total Frontal area lost 117729 ± 8437 m² with rate of 1962 ±140 m²
- > Total mass volume lost between 2003 and 2017- (-) 54.9 x 10^6 m³ w. e. with rate of (-) 4.6×10^6 m³ w.e. a⁻¹
- ➤ During the same periods the average specific balance was (-) 0.63 m w.e. and the average thickness lost by the glacier was ~8 m w.e.
- ➤ The altitude of average ELA of the glacier was 5072 m and the ELA shifted upward ~25 m between 2003 and 2017. Average AAR of the glacier was ~ 0.44
- ➤ The Response time for glacier advancement is ~17 year, while the lag time of glacier signal transferred from accumulation area to the snout by glacier flow is about 562 year

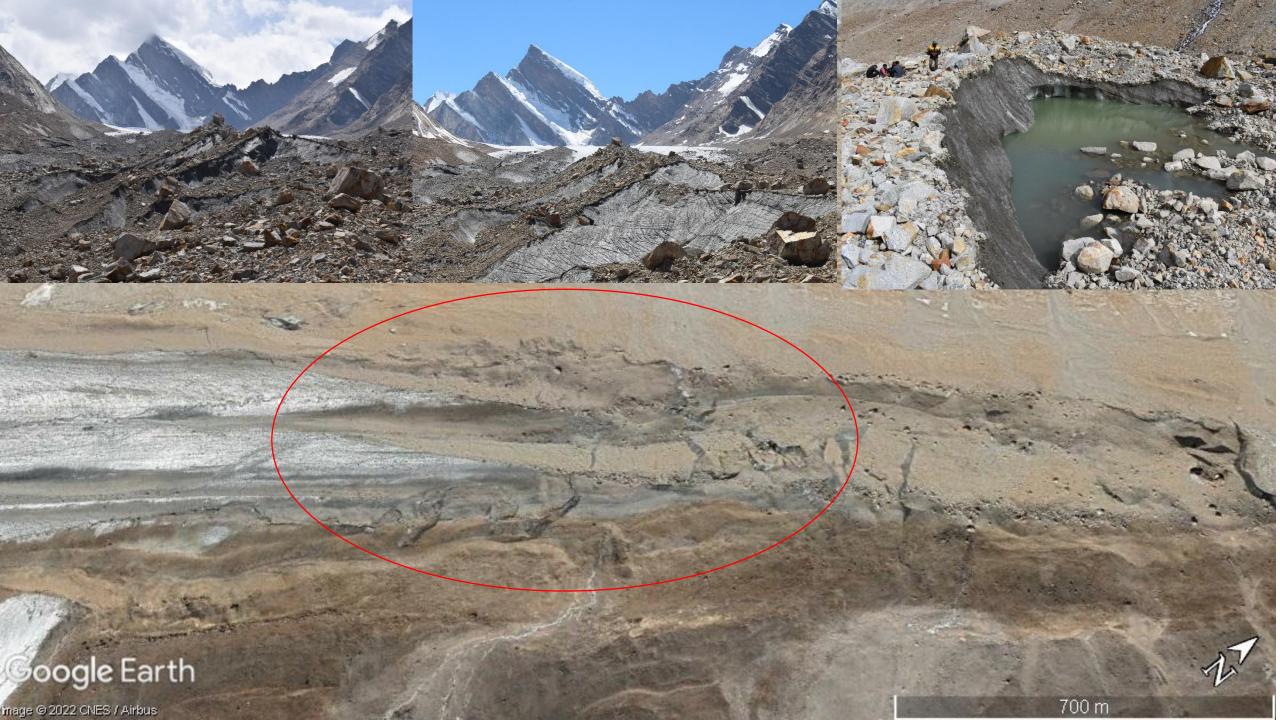
12 years data series of annual balance, AAR and ELA of **Dokriani Glacier** observed during 1992-2013.

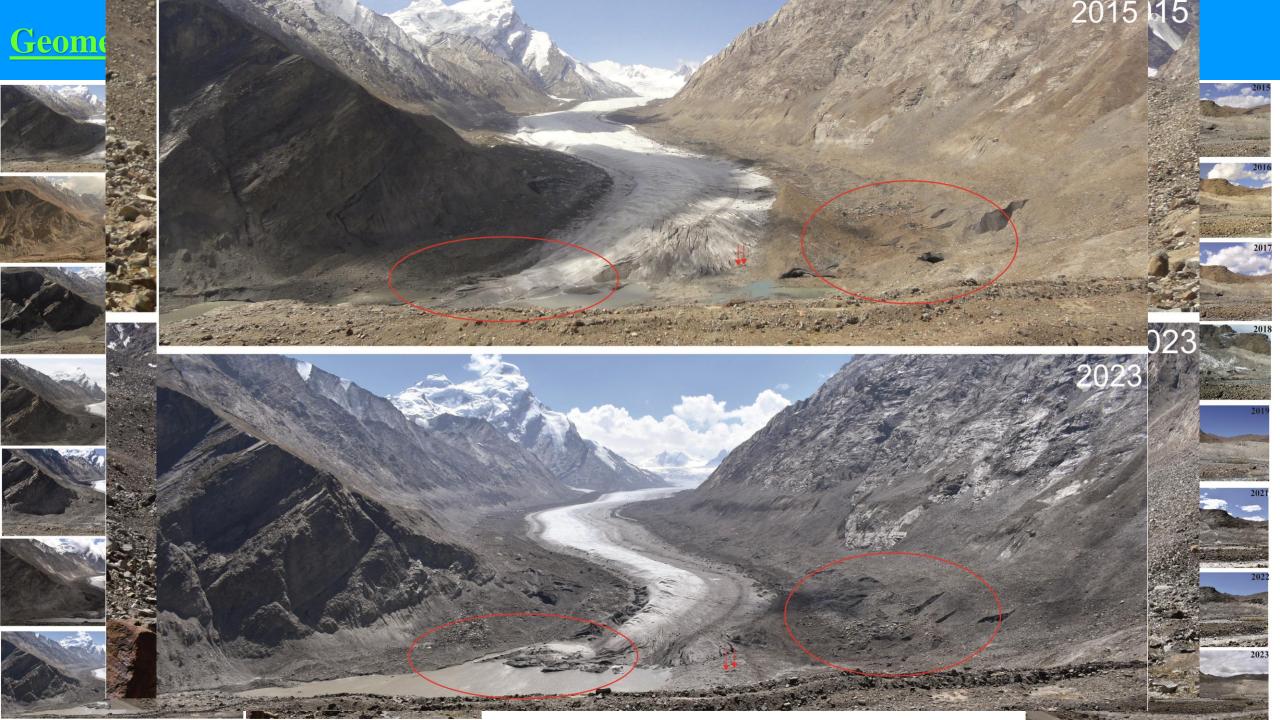
Year	Annual balance (b _a) (10 ⁶ m³ w.e.)	Annual balance (b _a) m w.e.	ELA m asl	AAR	Reference
1992-93	-1.54	-0.22	5030	0.70	Dobhal et al.
1993-94	-1.58	-0.23	5040	0.69	(2008)
1994-95	-2.17	-0.31	5050	0.68	
1995-97					
1997-98	-2.41	-0.34	5080	0.67	
1998-99	-3.19	-0.46	5100	0.66	
1999-2000	-2.65	-0.38	5095	0.67	
Cumulative/Average	-13.54/	-1.94/	5065	0.67	
1992-2000	-2.25	-0.32			
2007-08	-2.52	-0.36	5095	0.668	Dobhal et al.
2008-09	-2.9	-0.41	5100	0.664	(2021)
2009-10	-1.61	-0.23	5050	0.688	
2010-11	-1.67	-0.24	5055	0.683	
2011-12	-2.41	-0.33	5080	0.675	
2012-13	-2.36	-0.35	5090	0.672	
Cumulative/Average 2007-2013	-13.47/-2.24	-1.92/-0.32	5078	0.675	
Cumulative/Average	-27.01/	-3.86/	5072	0.67	
1992-2013	-2.25	-0.32			

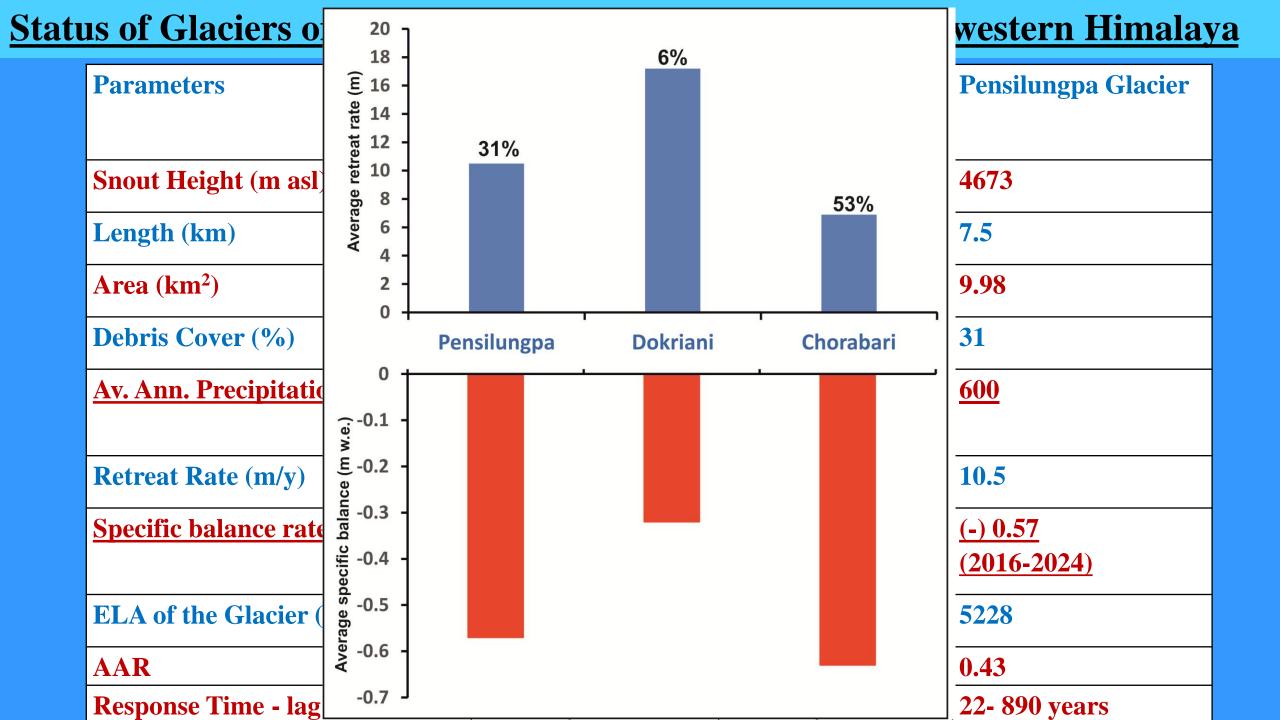
Specific mass balance gradient vs elevation (2016 to 2024) of Pensilungpa Glacier (Media et al., 2021)

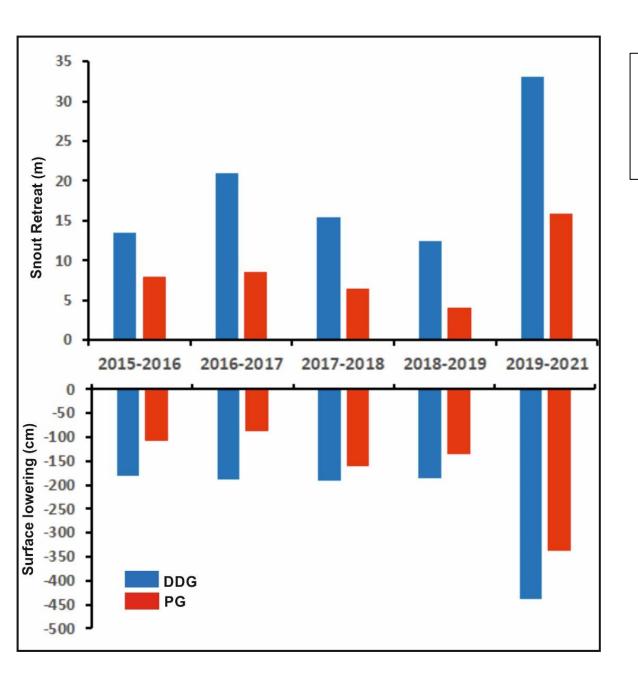

- √The average net balance of the glacier to be -5.7 x10⁶ m³ w.e. a⁻¹ with an average specific balance of -0.57 m w.e. a⁻¹ during the periods 2016 to 2024. Whereas, the ELA ascended by ~36 m.
- ✓ Glacier lost ~38.73 x10⁶ m³ w.e. ice volume between 2016 and 2024 and lost approximately 4 m average ice thickness.
- ✓ Glacier lost about 6% of total area between 2016 and 2024.
- √The Response time for glacier advancement is ~22 year, while the lag time of glacier signal transferred from accumulation area is about 890 year

Debris thickness and Ice melting

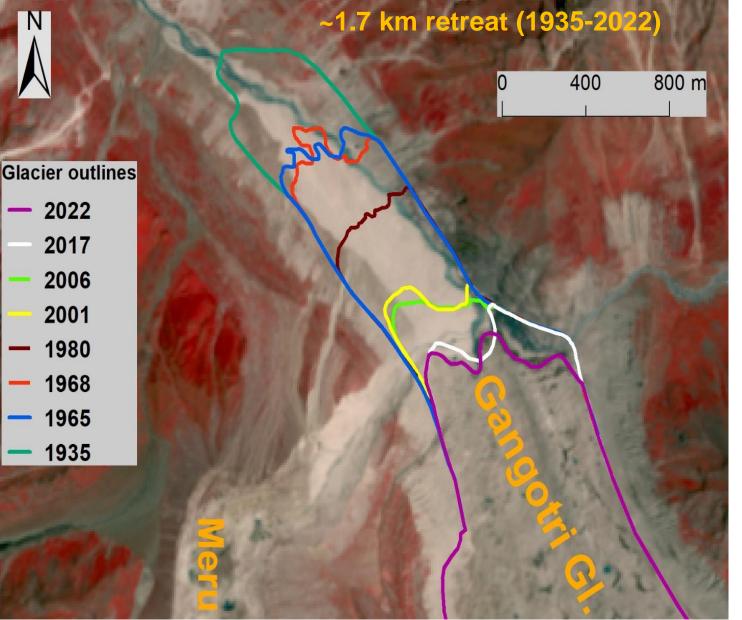







- ➤ Old stake over the thick debris cover (2018) showing the surface melting.
- New stake installed over the thick and patchy debris cover (2018).
- Relationship between debris thickness and ice melting along the center line of Pensilungpa Glacier (up to 5000 m a.s.l.) between 2018 and 2019.

Snout Retreat and Surface lowering of Durung-Drung Glacier (DDG) and Pensilungpa Glacier (PG)



Comparison of surface lowering between the contour interval of 200 m (year 2015-2021) in lower ablation zone and snout retreat of the DDG and PG. The data from 2019 to 2021 is obtained from 02 stakes of PG and 01 stakes of DDG

- ✓ Observation suggests that thick debris covered PG retreat with slower rate and lost less thickness compared to partly debris covered DDG.
- ✓ Similarly since 2015 to 2021 PG retreat 45±18 m with rate of 6.4±3 ma⁻¹ and lost~ 8 m surface thickness between 4690 m asl and 4830 asl.
- ✓ Whereas, DDG retreat 95.5±53 m with rate of 13.6
 ±7.5 ma⁻¹ and lost ~ 11 m surface thickness between
 4140 m asl and 4350 asl.

Frontal retreat of Gangotri Glacier between 1935 and 2022 (Bhambri et al., 2024)

Frontal retreat

Repeated photography

Bhambri et al. (2023, JoGSI)

Palaeoglaciation & Paleoclimate study in Suru Basin, Ladakh

	76°11/15"E	76°12'30"E	76°22'15"E 76°3 <i>A</i> '(DDG		
9'45"N	Stages	Age (ka)	Area (km²)	Average Ice thickness (m)	Ice Volume (km³)	Mean ELA (m asl)
34						
	Stage-I	33±6 - 23±4	640	173	111	4836
N0	Stage-II	16±6	569	150	85	4852
33°59'0"N	Stage-III	13±2 -11±2	398	95	39	4995
	Stage-IV	10±1 - 7 ±0.7	299	86	27	5141
N. 9	Stage-V	2.8±0.4	214	76	16.3	5169
33°48'15"N	PD	-	138	65	8.8	5374
		Area Lost	502 (78%)	Volume lost	102 (92%)	△ELA = 538
V	linkages between	regional and global climate c	·	me isotope diages (Miid) 3/2 to	the Lime Ice Age (LIA), and	i are critical in unucrstanding the

The data provide a record of six glacial advances of decreasing magnitude, dated

(i) 33–23 ka, LGM (ii) 16 ka, Henrich event, (H 1) (iii) 13–11 ka, Younger Dryas (YD) (iv) 10–7.3 ka, Global cooling (v) 2.8–2.3 ka, Late-neoglaciation vi) 0.7–0.4 ka. LIA

Kumar et al., 2021, (QSR); Mehta et al., 2021 (REEC)

Glacier advance stages at Mandakini and Tons River basin

			ALCO CONTRACTOR OF THE PARTY OF				
Location Stages		Dates (ka)	ELA (m)	Pred.Sp. bl. (m w eq.)	Area (km²)		
Mandakini River	RGS	13±2	4747±229	7±229 (+) 0.31			
valley (Chorabari Glacier)	GhGS	9±1	4817±224	(+) 0.08	~ 30		
	GGS	7±1	4951±197	(-) 0.34	~ 23		
	KGS	5±1	5022±190	(-) 0.57	~ 22		
		PD	5120±10	(-) 0.73	~ 15		
		Δ ELA	~ 373 m	Area Lost	~ 16 (51.6%)		
Tons River valley	HDGS 1	20±3	4510±320	(+) 0.5	~141		
(Jaundhar Glacier)	HDGS 2	16±2	4640±250	(+) 0.6	~137		
	SGS	8±1	4700±216	(+) 0.16	~131		
	ogs	6±1	4800±152	(+) 0.09	~123		
	GGS	3±0.6	4878±72	(+) 0.09	~118		
		PD	4960±46	(-) 0.08	~96		
		Δ ELA	~ 450 m	Area Lost	~ 46 (32 %)		
			CONTRACTOR OF THE STATE OF THE	The second secon			

Glacier advance stages at Dingad basin

A	Stages	Age (ka)	Area (km²)	Average Ice thickness (m)	Ice Volume (km ³)	Mean ELA (m asl)
	DGS-I	22-25	19.01	89	1.69	4568 N
	DGS-II	11-14	16.45	74.5	1.23	4709
В	DGS-III	8	13.99	65	0.91	4839
	DGS-IV	3.7-4	12.15	61	0.74	4904 sin Boundary price
0	DGS-V	1-2.7	10.13	52	0.53	4958
	PD	-	6.7	49	0.28	5062
		Area Lost	12.31 (65%)	Volume lost	1.42 (83%)	△ELA = 494

Glacial Stages identification and compared

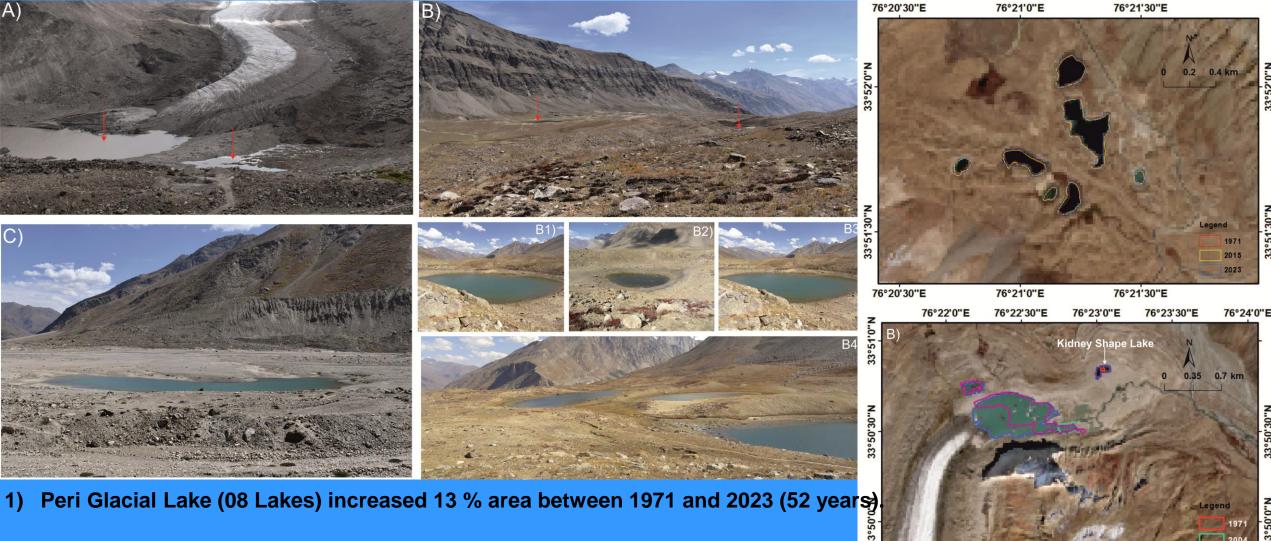
Glacial Stages	Suru River Basin	Tons River Basin	Dingad valley	Mandakini Basin
Stage I	25-33 ka	20 ka	22-25 ka	
Stage II	16-20 ka	16 ka	11-14 ka	13 ka
Stage III	9-13 ka	8 ka	8 ka	9 ka
Stage IV	6-7 ka	6 ka	4- 3.7 ka	7 ka
Stage V	0.6-2.8 ka	1-2.7 ka	3 ka	5 ka

Glacier Lake inventory of Uttarakhand (Bhambri et al. 2013)

Main type	Sub type	Total number	%	Total area (m) ²	%	Mean area (m) ²
Moraine- dammed lake	End moraine-dammed lake	44	3.5	1596367	21.0	36281
	Lateral moraine-dammed lake	67	5.3	652054	8.6	9732
	Recessional moraine-dammed lake	214	16.9	1589375	20.9	7427
	Other moraine-dammed lake	4	0.3	98143	1.3	24536
Ice-dammed lake	Supra-glacial lake	809	63.9	2000524	26.3	2473
Glacier erosion lake	Cirque lake	48	3.8	1174222	15.5	24463
	Other glacial erosion lake	77	6.1	466491	6.1	6058
Other glacial lake	Other glacial lake	3	0.2	17695	0.2	5898
	Total	1266		7594871		
					A A START	

Glacier Lake inventory of Himachal Pradesh (Bhambri et al., 2019)

				Total area		
Main type	Sub type	Total number	%	$(\mathbf{m})^2$	%	Mean area (m) ²
Moraine- dammed lake	End moraine-dammed lake	65	6.8	2284636	23.8	35148
	Lateral moraine-dammed lake	36	3.8	321685	3.4	8936
	Medial moraine-dammed lake	3	0.3	21339	0.2	7113
	Other moraine-dammed lake	241	25.2	2514578	26.2	10434
Ice-dammed lake	Supra-glacial lake	228	23.8	439442	4.6	1927
	Glacier-Ice dammed lake	50	5.2	269549	2.8	5391
Glacier erosion lake	Cirque lake	7	0.7	316576	3.3	45225
	Other glacial erosion lake	291	30.4	3126277	32.6	10743
Other glacial lake	Debris dammed lake	28	2.9	220309	2.3	7868
	Artificial Lake	9	0.9	79703	0.8	8856
	Total	958		9594094		


Potentially dangerous glacial lakes in Uttarakhand

0 0.25 0.5

	78	°0′0″E		79°0′0″E		7180	80°0′	0″E	8	1°0′0″E			lazard c	ato	dory		Cumula	Cumulative Weightage (CW)					Number of Lakes			
					2	h at			B. San			Ŀ	iazaiu C	Jaic	gory		Guillula	11176		ye (Nulli	Dei Oi i	Lanes	
Lake ID	Latitude	Longitude	Area 2013 (sq. m)	Area 2023 (sq. m)	W	Change in Area (sq m)	W	Valley Name	Elevation	w	Downstream Slope (in degree)	W	Distance Between GL & PG (m)	w	Dam Height (in m)	W	Dam Type	W	Distence Between GL & Settelments (in km)	W	Upstream slope (in degree)	W	CW	Hazard Categor y	Name of Lake	
L1	30°44'44.86"N	78°59'7.66"E	244613	366871	50	122258	50	Bhilangana	4760	40	31	30	0	50	6	40	Moraine Dammed	50	21	10	32	50	370	A	Masar Tal	
L2	30°33'52.61"N	80°10'35.53"E	199089	215479	50	16390	50	Goriganga	4900	40	17	20	0	50	17	20	Moraine Dammed	50	17	20	26	40	340	A	Safed Tal	
L3	30°23'30.34"N	80°31'55.11"E	110030	127498	50	17468	50	Dhauliganga	4785	40	27	20	0	50	15	20	Moraine Dammed	50	17.0	20	24	30	330	A		
L4	30°54'4.20"N	79°45'18.64"E	201705	211187	50	9482	50	Alaknanda	4697	40	13	10	0	50	5	50	Moraine Dammed	50	18.0	20	10	10	330	A	Vasudhara	
L5	30°26'43.97"N	80°23'14.58"E	114890	119060	50	4170	40	Dhauliganga	4341	30	38	30	0	50	4	50	Moraine Dammed	50	28.4	10	13	20	330	A	Mabang Tal	
L6	30°49'50.16"N	79°53'37.69"E	54661	59915	30	5254	50	Alaknanda	5205	50	28	20	85	50	6	40	Moraine Dammed	50	17.0	20	15	20	330	A		
L7	30°53'24.74"N	79°18'12.96"E	22275	26188	20	3913	40	Alaknanda	5372	50	24	20	0	50	13	30	Moraine Dammed	50	18.0	20	30	40	320	В		
L8	30°59'26.25"N	79°21'33.95"E	37173	41155	30	3982	40	Alaknanda	5360	50	28	20	515	10	5	40	Moraine Dammed	50	9.0	30	30	50	320	В		
L9	30°59'38.33"N	79°21'17.29"E	17459	23773	20	6314	50	Alaknanda	5431	50	12	10	0	50	6	40	Moraine Dammed	50	20.0	10	17	30	310	В		
L10	30°15'50.58"N	80°42'46.88"E	28238	30814	30	2576	30	Kutiyangti	4550	40	16	20	0	50	11	30	Moraine Dammed	50	21.5	10	21	30	290	В		
L11	30°20'12.78"N	80° 4'26.30"E	3521	27220	20	23699	50	Goriganga	4241	30	14	10	0	50	4	50	Moraine Dammed	50	13.0	20	10	10	290	В		
L12	30°29'28.09"N	80°22'27.54"E	53309	53490	30	181	10	Dhauliganga	5079	50	18	20	370	10	3	50	Moraine Dammed	50	8.7	30	23	30	280	В		
L13	30°22'20.78"N	80°36'13.13"E	46828	46849	30	21	10	Kutiyangti	4860	40	11	10	94	50	6	40	Moraine Dammed	50	34.0	10	16	30	270	C		
L14	31° 8'16.48"N	79°18'31.69"E	23425	24473	20	1048	20	Bhagirathi	5692	50	24	20	110	10	30	10	Moraine Dammed	50	5.3	50	25	40	270	C		
L15	30°54'51.47"N	78°47'41.29"E	10396	12142	20	1746	20	Bhagirathi	4670	50	31	30	612	10	11	30	Moraine Dammed	50	20.1	10	31	50	270	C		
L16	30°16'34.07"N	80°27'8.28"E	7191	9805	10	2614	30	Dhauliganga	4284	30	10	10	0	50	4	50	Moraine Dammed	50	30.9	10	16	30	270	C		
L17	31° 9'5.73"N	79°16'1.54"E	47030	45873	30	-1157	10	Bhagirathi	5451	50	23	20	269	10	8	40	Moraine Dammed	50	8.5	30	15	30	270	C		
L18	30°48'48.23"N	79°55'33.24"E	52650	55691	30	3041	30	Alaknanda	4965	40	87	50	585	10	12	30	Rock Dammed	10	9.9	30	21	30	260	C		
L19	30°54'29.15"N	79°49'27.84"E	74609	74810	30	201	10	Alaknanda	5061	50	27	20	750	10	19	20	Moraine Dammed	50	8.8	30	28	40	260	C	Geldhang Tal	
L20	30°24'30.27"N	80°30'40.53"E	31293	31649	30	356	10	Dhauliganga	4750	40	20	20	1227	10	9	40	Moraine Dammed	50	19	20	29	40	260	C		
L21	30°38'22.34"N	79°41'39.93"E	16655	16829	20	174	10	Alaknanda	4270	30	18	20	840	10	31	10		50	12.0	20	35	50	220	C	Machchhi Tal	
L22	30°26'16.83"N	79°57'34.22"E	38219	43025	30	4806	40	Alaknanda	4520	40	21	20	NA	10	23	10	Lateral Moraine Dammed	40	33.4	10	55	50	250	С		
L23	30°54'42.55"N	78°57'28.11"E	93674	85913	50	-7761	10	Bhagirathi	4726	40	13	10	NA	10	20	10	Lateral Moraine Dammed	40	9.5	30	43	50	250	С	Kedar Tal	
L24	30°53'30.98"N	78°49'5.42"E	38336	38133	30	-203	10	Bhagirathi	4670	40	8	10	NA	10	5	50	Lateral Moraine Dammed	40	23.0	10	30	40	240	C		
L25	30°27'21.25"N	80°30'56.55"E	54068	53413 N.06.92.06	201	-655	10	Dhauliganga	N.56.30.N	Tota	35 360 m ² al area eased-	30	21118 increa 4.7%			20 79°44'30	2013 0 250 500	50 79°	22.7 1,000 Meters	10 8		30 023 013	0 79°45'0"E	250 500	Pyungru Tal 1,000 Moters	

3.6%

Glacier Lake Changes in Suru and Doda River Basins

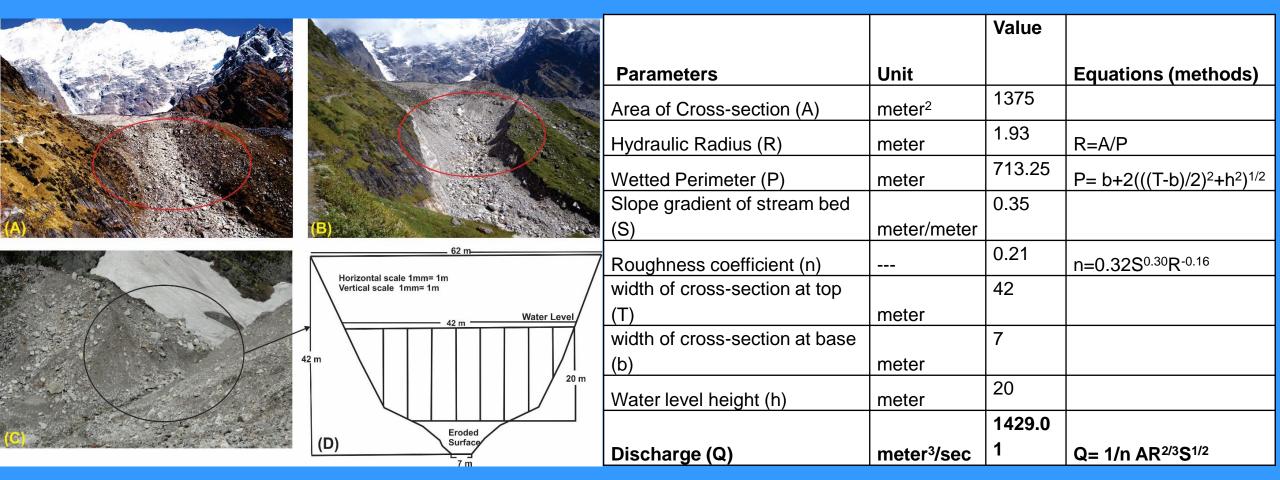
2) The expansion of the proglacial lake near snout of Durung-Drung Glacier was notable, with approximately a 164% increase in area between 2004 and 2023.

Area 2004= 17251 m²

Area 2023= 286659 m²

76°23'30"E

76°23'0"E


76°22'30"E

76°22'0"E

Natural Hazards- 2013 Kedarnath Disaster

Estimated discharge of Chorabari Lake during lake burst, June 2013, using area slope method

Equation adopted from Manning (1891), Lane (1955), Jarrett (1988).

The volume of debris deposited (+) and removed (-) during the disaster of 16-17 June 2013

11	ie volume	or gebus geb	osited (+) and removed	(-) aarin	a me alegen	e. 01 10-17 Jr	
SN	River Valley	Location	Site	Length of River (km)	Area affected (m²)	Estimated Volume Deposited/Remo ved (m³)	Stream Gradients
1.	Alaknanda	Lambaghar	JP Dam and upto confluence of Alaknanda and Khiro Ganga	~1.3	21.2x10 ⁴	~ (+) 2.44x10 ⁶	49 m/km

Govindghat town

Kedarnath town

Gaurikund town

Sonprayag town

Ghodapadav

area

Village and cultivated land

Village and cultivated land

Chorabari Lake and Glacier

moraine up to 3970 m asl

Rambara town and surrounding

Govindghat

Pulna village

Kedarnath

Rambara

Gaurikund

Sonprayag

Laxman

Mandakini

Ganga

Bhyundar Village

~ (+) 0.3x10⁶

 \sim (-) 2.9x10⁶

 \sim (+) 0.72x10⁶

~ (-) 2.1x10⁶

 $^{\sim}$ (+) 3.9x10⁶

 \sim (-) 2.6x10⁸

~ (-) 0.29x10⁶

~ (-) 0.04x10⁶

 \sim (+) 1.4x10⁶

45 m/km

75 m/km

62 m/km

243 m/km

70 m/km

235 m/km

222 m/km

52 m/km

 3.6×10^4

 3.6×10^4

 5.9×10^4

43 x10⁴

 2×10^6

 0.84×10^4

 0.31×10^4

 $7.3x10^4$

 4×10^4

~0.65

~0.83

~0.70

~0.60

~0.67

0.46

0.38

0.10

0.50

Consequences

Rishiganga Disaster, 2021 >A hug Crevasse a)_ m wic b) hangi Raunthi Gder Lake/Pond main Fracture develop on the rock surface Avalanche and debris slide towar **≻**Rock i **Schist** ➤ The rc rock n 20 M(Failure rock Mass Vacated area/ with hanging glacier Flooded Raunthi Gadera

Consequences



Conclusion- Why are Himalayan glaciers receding? major concern

- ➤ Based on the our findings, it can be assumed that the recent climate warming in the Himalaya may be traced back to the end or even the coldest time of the LIA. The Himalayan glaciers have responded sensitively to the enhanced midlatitude westerlies during the LIA.
- ➤ The temperature and precipitation data (1901–2021) suggest an increase in the temperature and no changes in precipitation during winter period. This increase in temperature (shift from solid to liquid precipitation) has been identified as one of the major factors responsible for decrease in snowfall over the Indian Himalayan region
- > This might have caused reduction in the glaciated area in the region as the precipitation and temperature of winter periods play an important role in nourishing the glaciers.
- > The data also suggested that the climate change is mainly the result of a temperature increase in winter periods with a much smaller increase in the summer season. This means that summer time is expanding and winter time is shrinking.
- > The study also assumed that due to continuous rise in the air temperature in line with the global trend, the melting would increase, and it is possible that the precipitation of summer periods at higher altitudes will change from snow to rain and that may influence the summer accumulation pattern. Moreover, extreme events such as cloudbursts, excessive rainfall, flash floods and avalanches may increase in the future
- > Consequently, more negative mass balance will translate into a pronounced to increase the size of glacier lake and which will increase the future risk of GLOF in the Himalaya and adjacent regions.

