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Why Focus on Himalayan Flood Causing Extremes?

.
Semenand

The Himalayas stretch between eight countries across Asia, is the
world’s tallest mountain range.

This region is the source of the 10 major river systems that provide
irrigation, power and drinking water for over 1.5 billion people in
Asia — nearly 20% of the world’s population.
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The region is increasingly vulnerable to flood-causing precipitation
extremes, due to the diverse geographical settings:

Elevated Tibetan Plateau, glaciated high mountains, dry
continental regions to the north and west, heavily precipitating
monsoon systems to the south, bordered by the Indian and Pacific
Oceans

Climate change intensifies the vulnerability through warming,
altered precipitation patterns, and enhanced variability.

Recent disasters (eg: 2022 Pakistan floods) expose the limitations of
current understanding, planning, and response systems.




Recent Precipitation Extremes - Causes, teleconnections, feedbacks,
climate change signal, ...

* June 2013, July 2023 Uttarakhand event: Heavy rainfall and floods over
Northwest Himalayas — Monsoon and Mid-latitude interactions, moisture
transport from north Indian ocean

e July-August 2022, 2010: Widespread and heavy rainfall and devastating floods in
Upper Indus basin.

* Leh 2010 flash flood: Mesoscale convective systems over the high terrain

e Gaps in our understanding and Recommendations



2013 Uttarakhand Floods
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Monsoon-extratropical circulation interactions in Himalayan
extreme rainfall

16-20 June 2013

Flood producing extreme
precipitation (eg., 16-20 June
2013 and many other cases)
over NW Himalayas:
Interaction between
Monsoon & Extra-Tropical
circulation
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Comparing events a decade apart over the same region
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Evaporative sources

Southward movement of the subpolar jet stream creates a trough in the subtropical jet stream (both years)
In 2013, inland moisture was transported by two LPS
In 2023, evaporative sources near Madagascar and the western Indian Ocean were key contributors

Dey et al. 2025



2022 Indus Basin Floods : One of the worst disasters in recent years (Compounding extreme)
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Drivers of the infamous 2022 Pakistan Floods Krishnan et al 2025

Rossby wave pattern

Intensified Walker circulation
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Local Preconditioning: Large-Scale Climate Drivers:
*Early heatwaves increased snowmelt and streamflow. *Triple-dip La Nina (2020-2022):
*Low-pressure systems formed due to land-surface heating. * Westward shift of Pacific Subtropical High
*Warm Arabian Sea enhanced evaporation and moisture * Enhanced moisture transport into the Indus Basin
availability. *Negative Indian Ocean Dipole (IOD):

» Strengthened monsoon currents from the Arabian Sea

Spatial and temporal compounding



Leh flash floods — 2010

The Disaster in Leh: Less than 1 week after the
catastrophic slow-rise flooding of the Indus
river in Pakistan in late July 2010, flooding of a
different, more sudden type produced a
disaster in the city of Leh, India, located 500 km
to the east. The town of Leh, located in the

H E STE E P ED GE OF H IG H Ladakh region of the J&K state of India, is a
high-altitude cold desert valley, 3,500 m above
sea level. Torrential rains delivered to the
T E P\ R A | N region by a succession of mesoscale convective
systems moving of the region triggered
|_"li" 1cten 0 T_I';'»} H”.’.:’_":,} vas extensive flooding
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Rasmussen and Houze, 2012



A flash-flooding storm at the steep edge of high terrain — Rasmussen and Houze, 2012
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Fic. 2. Sequence of maps showing the evolution of atmospheric structure prior to the Leh flash-flooding
event. One-day-average geopotential height field (m) of the (top) 500- and (middle) 700-mb surface. (bottom)
Contours of vertically integrated precipitable water (mm) and 700-mb wind vectors. Note that the data source
and topographic scale for (a)-(i) are the same as in Fig. Ic.
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Fic. 5. Sequence of infrared satellite images (K) from Meteosat-7 showing the diurnal evolution of the storm
systems that resulted in the Leh flood. Each row shows data for a different sequential day leading up to the
Leh flood (3-5 Aug) and each column shows a different time of day (0600, 1200, and 2000 UTC). The location
of Leh is indicated (circled cross) on each map.
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Conceptual model demonstrating key meteorological elements that led to
the anomalous flash flooding case in Leh. Convective cells on the Tibetan
Plateau organize upscale and propagate to the west. The MCS on the edge
of the Himalayas taps into the upslope low-level mositure.

CONCLUSIONS: Our investigation into the
meteorological setting of the catastrophic flash
flood in Leh, India reveals that the event was
related to the highly unusual development of
mesoscale convective systems from diurnally
generated convective cells forming over the
Tibetan Plateau within the context of a persistent
500-mb flow pattern directing the MCSs over Leh
and forcing moisture up the slope of the Himalayas
in the Leh region.

Rasmussen and Houze, 2012



Projected changes in extremes are larger in frequency and intensity with
every additional increment of global warming
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Heavy precipitation over land

10-year event

Frequency and increase in intensity of heavy 1-day
precipitation event that occurred once in 10 years on
average in a climate without human influence

now likely
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1.3 times
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wetter

Future global warming levels
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Every additional 0.5°C of global warming causes
clearly discernible increases in the intensity &
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People and infrastructure in mountain regions at risks of landslides and/or floods

for 1.3-1.7°C, 2.0-2.5°C and 4°C Global Warming Levels

(a) Risks in AR6 WG reference regions
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Dotted border between TIB and SAS is due to

. Very high =

discrepancies between studies referring to the Southern Himalaya as part of SAS,
and the new AR6 WGl reference region delineations which include most of the Southern Himalaya in TIB.

(b) Risk and driving hazards in mountain regions
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Key Knowledge Gaps and Challenges:

1. Challenges in Modeling & Attribution :

e Difficulty in attributing extreme events directly to climate change
* Limitations of climate models: Intensity and location of heavy monsoon rainfall, Convective systems in
South Asia, Anomalous SSTs

2. Monsoon System Complexity

* Asian monsoon influenced by multiple climate modes: ENSO, 10D, PDV,

* High variability across time and space complicates prediction

* Uncertainty in how modes like El Nifio / La Nifia respond to global warming.
3. Inadequate Data Coverage

» Sparse historical and in-situ data in remote areas (e.g., Himalayas).

e Limited real-time monitoring of: Soil moisture, Glacier melt
* Gaps in satellite and gridded data for high-mountain regions.




Recommendations to address scientific and data gaps to improve extreme and compound
event prediction and projections over the Third Pole region

RECOMMENDATIONS

High Mountain
Asia monitoring
Glacier mass balance,
glacial lakes, river flows

High-resolution datasets

e.g.: km scale gridded, near real-time soil moisture
and precipitation datasets and atmospheric variables
(temperature, humidity, winds, radiation)

Ocean monitoring

Surface and sub-surface measurement

e.g.: tide gauges, buoys, autonomous vehicles to measure
ocean heat content, marine heatwaves, extreme sea levels, etc.

Processes, Data, and Models
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Model improvement Open Data

High resolution weather
and climate simulations
(e.g. grid size < 10km
resolution), enhanced
hydrological models,

large ensemble simulations.

Data sharing between
Asian countries such as
the Hi-RISK platform
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Process
understanding
Mechanisms and feedbacks
driving compound extremes in
Asia e.g.: atmosphere-cryosphere
interactions, soil moisture-
temperature feedbacks tropical-
extratropical interactions, marine
heatwave-tropical cyclone
interactions

A Multi-hazard Early
Warning Systems
Impact based forecasting, expand community-based systems

e.g. by ICIMOD, Al-driven early warning systems that integrate real-time
data from diverse sourcesheatwaves, extreme sea levels, etc.

Machine Learning/
Artificial Intelligence
Analysis of historical compound
events, compound event
detection, compound event risk
modeling, data assimilation,
model bias correction

&

Monitoring land
surface processes

& Monitoring
“> water cycle

o ,
o Teleconnections
o ENSO-Monsoon, IOD-Monsoon coupling

Remote sensing
Satellite-based observations of
Essential Climate Variables (ECVs)

Collaboration and Capacity Building
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Capacity building
programmes
Modelling, data analysis,
risk assessment. Advanced
Modeling Workshops

A
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Transboundary
collaboration

Joint research projects,
regional workshops,
knowledge exchange
platforms linking Asian
universities and institutions.
Collaboration on Early
Warning Systems

Krishnan et al 2025



High resolution modelling initiatives at I1'TM to better predict and project weather and climate extremes
High resolution climate projections using I'TM-ESM AGCM (T574, ~27 Km)

AMIP-type Future Projection
» Dynamical downscaling of IITM-ESM v2 CMIP6 historical simulation using the

»>Global & regional - : , :
o g high-resolution (27 km grid) atmospheric component of IITM-ESM v2
— ((arkmacem ) climate assessments g ( grid) P P

» Spectral model with reasonable good skill in simulating Indian and Pacific

» Assessment of south oceanic teleconnections with Indian monsoon
Asian monsoon

» This high-resolution climate simulation will be able to contribute towards various
assessments for the country, along with contributing to CORDEX South Asia.
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Observed SST Obs + Projected Region 6: South Asia
(AMIP-type) SST change Coordinated Regional Climate Downscaling Experiment

The following experiments are completed or underway as part of this programme

1.
2.
3.
4.

Historical 1981-2014
SSP 2-4.5 2081-2100
SSP 2-4.5Aero 2081-2100
SSP 2-4.5GHG 2081-2100

SSP 5-8.5 also will be completed along with this Courtesy: Dr Sabin, ITM



Km-scale forecast model: Bharat Forecast System

« Bharat Forecast System is a triangular-cubic octahedral (TCO) grid based global forecast model
developed by IITM

« This grid enhances resolution specifically over the tropics, and the current version of the model runs
at the horizontal resolution of about 6 km over the tropics.

8th July 2024 Exceptionally heavy rainfall Event caused major flash floods West Uttar Pradesh and Uttarakhand
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BharatFS Exceptionally well predicted the rainfall amount and location
Courtesy: Dr Medha Deshpande, IITM



Key Message & Way Forward

Himalayan floods are devastating due to the interplay of monsoon dynamics, mid-latitude systems and
cryospheric changes—all worsened by climate change.

2022 Indus Basin flood exemplifies compound hazards: heat-induced glacial melt, sustained heavy rainfall, and
saturated soils amplified by La Nifa and IOD.

Scientific Gaps:
* Inadequate model skill in simulating monsoon meso-scale processes and teleconnections.
» Sparse high-altitude observational data (precipitation, glacier melt, soil moisture).
* Limited understanding of climate driver interactions (e.g., ENSO, 10D)

Recommendations:
* Invest in Km-scale climate models (CORDEX, TPCORDEX)
e Strengthen Himalayan observation networks and early warning systems.
* Prioritize regional collaboration and integrated compound risk governance.




